Didactic design of prompts to assess learning: Integration of artificial intelligence in undergraduate training

Didactic design of prompts to assess learning: Integration of artificial intelligence in undergraduate training

Authors

Keywords:

design, student assessment, artificial intelligence, teacher training

Abstract

In today's complex educational-technological context, language plays a crucial role in the interaction between people and machines, especially in the use of artificial intelligence. However, there is uncertainty and disagreement regarding the use of this digital technology and prompt designs for undergraduate learning assessment. This research focused on determining whether the use of artificial intelligence through the didactic design of prompts generates statistically significant differences in scores, obtained through a checklist, between a control and an experimental group. The results show a marked difference in scores, with higher passing grades in the experimental group, where the didactic design of prompts was implemented. The Mann-Whitney U test confirms these statistically significant differences, allowing us to conclude that the integration of artificial intelligence with active methodologies that involve students in the design and evaluation of prompts for problem-based learning substantially improves academic outcomes. This suggests that the combination of this technology can be an effective tool to enhance learning in higher education environments.

Downloads

Download data is not yet available.

References

Armas Velasco, C. B. & Iglesias Marrero, J. (2024). La evaluación del aprendizaje asistida por IA en el proceso pedagógico del posgrado. Referencia Pedagógica, 12(3): 506–518. https://rrp.cujae.edu.cu/index.php/rrp/article/view/427

Heston, T. F. & Khun, C. (2023). Prompt Engineering in Medical Education. International Medical Education, 2(3), 198–205. https://doi.org/10.3390/ime2030019

Korzynski, P., Mazurek, G., Krzypkowska, P. & Kurasniski, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25–37. https://doi.org/10.15678/EBER.2023.110302

Lo, L. S. (2023). The CLEAR path: A framework for enhancing information literacy through prompt engineering. The Journal of Academic Librarianship, 49(4), 102720. https://doi.org/10.1016/j.acalib.2023.102720

Lopezosa, C. (2023). La Inteligencia artificial generativa en la comunicación científica: retos y oportunidades. Revista de Investigación e Innovación en Ciencias de la Salud, 5(1), 1–5. https://doi.org/10.46634/riics.211

Lopezosa, C. & Codina, L. (2023, 27-28 abril). Inteligencia Artificial y métodos cualitativos de investigación: ChatGPT para revisiones de la literatura y análisis de entrevistas semiestructuradas. [Ponencia]. Jornada “IA Para Principiantes”, Universidad Pompeu Fabra, Barcelona. http://hdl.handle.net/10230/56505

Morales-Chan, M. A. (2023). Explorando el potencial de Chat GPT: Una clasificación de Prompts efectivos para la enseñanza. Galileo Dspace, Departamento De Investigación Y Desarrollo GES [Internet], 1-8. http://biblioteca.galileo.edu/tesario/handle/123456789/1348

Ramos-Galarza, C. (2021). Editorial: Diseños de investigación experimental. CienciAmérica, 10(1), 1–7. https://cienciamerica.edu.ec/index.php/uti/article/view/356

Reynolds, L. & McDonell, K. (2021, 8-13 mayo). Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm [Ponencia]. En Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama. https://doi.org/10.1145/3411763.3451760

Sánchez-Prieto, J. C., Izquierdo-Álvarez, V., del Moral-Marcos, M. T. & Martínez-Abad, F. (2025). Inteligencia artificial generativa para autoaprendizaje en educación superior: Diseño y validación de una máquina de ejemplos. RIED-Revista Iberoamericana de Educación a Distancia, 28(1), 59-81. Disponible en: https://doi.org/10.5944/ried.28.1.41548

Spasić, A. J. & Janković, D. S. (2023, 29 junio-1 julio). Using ChatGPT Standard Prompt Engineering Techniques in Lesson Preparation: Role, Instructions and Seed-Word Prompts [Ponencia]. 58th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Serbia. https://doi.org/10.1109/ICEST58410.2023.10187269

Velásquez-Henao, J. D., Franco-Cardona, C. J. & Cadavid-Higuita, L. (2023). Prompt Engineering: a methodology for optimizing interactions with

AI-Language Models in the field of engineering. Revista DYNA, 90(230), 9–17. https://doi.org/10.15446/dyna.v90n230.111700

Villa Sánchez, A. & Pizarro Fuentes, E. (2024). Liderazgo de Servicio: Un liderazgo altruista y transformador. Revista de Educación y Derecho, (30), 1–25. https://doi.org/10.1344/REYD2024.30.46622

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y. & Narasimhan, K. (2023). Tree of Thoughts: Deliberate Problem Solving with Large Language Models. Computation and Language, (2), 1–14. https://doi.org/10.48550/arXiv.2305.10601

Yong, G., Jeon, K., Gil, D. & Lee, G. (2023). Prompt engineering for zero‐shot and few‐shot defect detection and classification using a visual‐language pretrained model. Computer-Aided Civil and Infrastructure Engineering, 38(11), 1536–1554. https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12954?msockid=06c40c336121694f193e191a6086680c

Published

2025-06-17

How to Cite

Iglesias Marrero, J., & Armas Velasco, C. B. (2025). Didactic design of prompts to assess learning: Integration of artificial intelligence in undergraduate training: Didactic design of prompts to assess learning: Integration of artificial intelligence in undergraduate training. Pedagogical Horizon, 14. Retrieved from //www.horizontepedagogico.cu/index.php/hop/article/view/463

Issue

Section

Aula Abierta